Sepideh Sadaghiani

Assistant Professor

Research Interests

Large-scale neurocognitive networks, functional connectivity, cognitive control

Research Description

Distant brain regions are in constant communication with each other. This communication, also called functional connectivity, is foundational to all cognition. Functional connectivity is spatially organized into many large brain networks. But how this network organization is maintained and modulated in the service of flexible cognition is poorly understood. Sepideh Sadaghiani’s lab is studying connectivity and cognitive functions of large-scale brain networks. Her lab is most interested in networks involved in cognitive control functions such as alertness and attention (cognitive control networks).

One research line of the lab seeks to delineate the function of different cognitive control networks. This research investigates how cognitive control networks modulate processes in “lower-order” brain areas such as perception in sensory cortices.

Another research line focuses on the functional role of intrinsic (spontaneous) network activity. Neural activity and communication across brain networks are continuously ongoing independent of external stimuli or tasks. Sadaghiani’s research aims at understanding why this intrinsic activity and functional connectivity exists and how it affects behavior.

Sepideh Sadaghiani’s lab combines various techniques to address these questions in the human brain including functional magnetic resonance imaging (fMRI), electroencephalography (EEG), simultaneous EEG-fMRI and genetic analyses in healthy participants and neurological patients.


Neural and Behavioral Sciences, Ph.D., International Max Planck Research School of Neural and Behavioural Sciences

Postdoc - Stanford University 2015

Postdoc - University of California at Berkeley 2010-2014

Ph.D - Max-Planck International Research School, Germany & NeuroSpin, France 2007-2010

Additional Campus Affiliations

Assistant Professor, Beckman Institute for Advanced Science and Technology

Recent Publications

Friberg, S. S., Dombert, P. L., Løvstad, M., Funderud, I., Meling, T. R., Endestad, T., ... D'Esposito, M. (2019). Lesions to the Fronto-Parietal Network Impact Alpha-Band Phase Synchrony and Cognitive Control. Cerebral Cortex, 29(10), 4143-4153. [bhy296].

Bido-Medina, R., Wirsich, J., Rodríguez, M., Oviedo, J., Miches, I., Bido, P., ... Friberg, S. S. (Accepted/In press). Impact of Zika Virus on adult human brain structure and functional organization. Annals of Clinical and Translational Neurology.

Kucyi, A., Tambini, A., Sadaghiani, S., Keilholz, S., & Cohen, J. R. (2018). Spontaneous cognitive processes and the behavioral validation of time-varying brain connectivity. Network Neuroscience, 2(4), 397-417.

Wirsich, J., Giraud, A. L., & Sadaghiani, S. (2018). Concurrent EEG- and fMRI-derived functional connectomes exhibit linked dynamics. (bioRxiv; No. 464438). Cold Spring Harbor Laboratory Press.

Friberg, S. S., Ng, B., Altmann, A., Poline, J. B., Banaschewski, T., Bokde, A. L. W., ... Greicius, M. (2017). Overdominant effect of a CHRNA4 polymorphism on cingulo-opercular network activity and cognitive control. Journal of Neuroscience, 37(40), 9657-9666.

View all publications on Illinois Experts

In The News